164 research outputs found

    How can natural products serve as a viable source of lead compounds for the development of new/novel anti-malarials?

    Get PDF
    Malaria continues to be an enormous global health challenge, with millions of new infections and deaths reported annually. This is partly due to the development of resistance by the malaria parasite to the majority of established anti-malarial drugs, a situation that continues to hamper attempts at controlling the disease. This has spurred intensive drug discovery endeavours geared towards identifying novel, highly active anti-malarial drugs, and the identification of quality leads from natural sources would greatly augment these efforts. The current reality is that other than compounds that have their foundation in historic natural products, there are no other compounds in drug discovery as part of lead optimization projects and preclinical development or further that have originated from a natural product start-point in recent years. This paper briefly presents both classical as well as some more modern, but underutilized, approaches that have been applied outside the field of malaria, and which could be considered in enhancing the potential of natural products to provide or inspire the development of anti-malarial lead compounds

    Evidence for the Contribution of the Hemozoin Synthesis Pathway of the Murine Plasmodium yoelii to the Resistance to Artemisinin-Related Drugs

    Get PDF
    Plasmodium falciparum malaria is a major global health problem, causing approximately 780,000 deaths each year. In response to the spreading of P. falciparum drug resistance, WHO recommended in 2001 to use artemisinin derivatives in combination with a partner drug (called ACT) as first-line treatment for uncomplicated falciparum malaria, and most malaria-endemic countries have since changed their treatment policies accordingly. Currently, ACT are often the last treatments that can effectively and rapidly cure P. falciparum infections permitting to significantly decrease the mortality and the morbidity due to malaria. However, alarming signs of emerging resistance to artemisinin derivatives along the Thai-Cambodian border are of major concern. Through long-term in vivo pressures, we have been able to select a murine malaria model resistant to artemisinins. We demonstrated that the resistance of Plasmodium to artemisinin-based compounds depends on alterations of heme metabolism and on a loss of hemozoin formation linked to the down-expression of the recently identified Heme Detoxification Protein (HDP). These artemisinins resistant strains could be able to detoxify the free heme by an alternative catabolism pathway involving glutathione (GSH)-mediation. Finally, we confirmed that artemisinins act also like quinolines against Plasmodium via hemozoin production inhibition. The work proposed here described the mechanism of action of this class of molecules and the resistance to artemisinins of this model. These results should help both to reinforce the artemisinins activity and avoid emergence and spread of endoperoxides resistance by focusing in adequate drug partners design. Such considerations appear crucial in the current context of early artemisinin resistance in Asia

    Advances in heterometallic ring-opening (co)polymerisation catalysis

    Get PDF
    Truly sustainable plastics require renewable feedstocks coupled with efficient production and end-of-life degradation/recycling processes. Some of the most useful degradable materials are aliphatic polyesters, polycarbonates and polyamides, which are often prepared via ring-opening (co)polymerisation (RO(CO)P) using an organometallic catalyst. While there has been extensive research into ligand development, heterometallic cooperativity offers an equally promising yet underexplored strategy to improve catalyst performance, as heterometallic catalysts often exhibit significant activity and selectivity enhancements compared to their homometallic counterparts. This review describes advances in heterometallic RO(CO)P catalyst design, highlighting the overarching structure-activity trends and reactivity patterns to inform future catalyst design

    In Vitro Activities of DU-1102, a New Trioxaquine Derivative, against Plasmodium falciparum Isolates

    No full text
    The antimalarial trioxaquine derivative DU-1102, synthesized by covalent linkage between aminoquinoline and trioxane moieties, was highly active against Cameroonian isolates (mean 50% inhibitory concentration of 43 nmol/liter) of Plasmodium falciparum. There was no correlation between the responses to DU-1102 and chloroquine and only a low correlation between the responses to DU-1102 and pyrimethamine, suggesting an independent mode of action of the trioxaquine against the parasites

    Development of amino-oxazoline and amino-thiazoline organic catalysts for the ring-opening polymerisation of lactide

    No full text
    The ring-opening polymerisation of lactide by a range of amino oxazoline and amino thiazoline catalysts is reported. The more electron-rich derivatives are demonstrated to be the most highly active and polymerisation is well controlled, as evidenced by the linear relationship between the molecular weight and both the monomer conversion and the monomer-toinitiator ratio. Mechanistic studies reveal significant interactions between the monomer, initiator and catalyst and that the polymerisation is first order with respect to each of these components. These observations indicate that the polymerisation operates by a general base/pseudo-anionic mechanism
    • 

    corecore